
STATICALLY ANALYSING THE DYNAMIC BEHAVIOUR OF
ASYNCHRONOUS CIRCUITS BY ABSTRACT INTERPRETATION

Sarah Thompson and Alan Mycroft

Computer Laboratory, University of Cambridge, William Gates Building, J J Thomson Avenue, Cambridge

Key words to describe this work: Abstract Interpretation, Asynchronous Circuits, Model Check-
ing, EDA, Static Analysis

Key results: An abstract interpretation framework is described that allows dynamic properties of
asynchronous circuits to be statically determined.

How does the work advance the state of the art?:A sound mathematical framework is pre-
sented that allows new approaches to the model checking, static analysis and logic synthesis of
asynchronous digital circuits.

Motivation (Problems Addressed): Most existing EDA systems are based implicitly on an un-
safe assumption that circuits are purely synchronous – the work described here provides a sound
basis for the creation of tools that are inherently safe for the general case.

Introduction

Abstract Interpretation is a long-established
mathematical approach that has the capabil-
ity to statically analyse the dynamic proper-
ties of a system. Traditionally, it has been ap-
plied to software, allowing useful information
about the run-time properties of programs to
be determined without requiring them to be
executed. This paper presents an abstract in-
terpretation framework that allows dynamic
properties of asynchronous circuits to be stat-
ically determined. We define several alterna-
tive models that together form a lattice with
Galois connections.

Motivating Example

As a motivating example, the circuit repre-
sented by the Boolean expressiona ∧ ¬a
may at first sight appear to be equivalent to0
(i.e. ground), due to the Boolean equivalence

a∧¬a = 0. However, this only holds whena
is unchanging – depending on the delays in-
herent in the circuit, glitches will typically be
generated at the output, triggered by either the
rising or falling edge of the signala. If missed
at the design stage, such problems must be
corrected through simulation and testing, an
expensive and time-consuming practice.

Our framework makes it possible to de-
termine what might happen if, for example, a
clean transition from0 to 1 (denoted↑0) is fed
into a ∧ ¬a:

↑0 ∧¬ ↑0 =↑0 ∧ ↓0 (since¬ ↑n=↓n) (1)

= F0..1 (definition of∧) (2)

The notationF0..1 may be read literally as
‘the signal that begins and ends with0, that
contains exactly0 or 1 complete pulses1’. In-
formally, this may be understood as asserting
that the resulting signalmightbe clean – if we

1In real circuits, analogue behaviour can result in the generation of extremely brief ‘runt pulses’. Our model accom-
modates this, in that a runt pulse that is below the switching threshold of connected gates is equivalent toF0, where a
runt pulse above the threshold is equivalent toF1. These alternatives are both captured by the notationF0..1.

1



are lucky with timing – butcan glitch under
the appropriate circumstances. Abstract inter-
pretation allows such potential design errors
to be detected by simple calculation, rather
than through laborious testing.

The Existing Approach

Current logic synthesis systems typically per-
form optimisation based on an implicit as-
sumption that generated circuits have a sin-
gle global clock. Surprisingly, the most com-
monly used hardware description languages
used do not enforce this – in Verilog, for ex-
ample, it is easy to inadvertently introduce
glitches when implementing gated clocks.
Even when the source code is correct, opti-
misation can remove prime implicants that in
a synchronous design would be superfluous,
but that are essential to the correct function-
ing of an asynchronous circuit.

Optimising Asynchronous Circuits

When optimizing an asynchronous circuit, it
is critically important that any changes made
should not introduce new glitches, although
removing them is generally safe. It is there-
fore appropriate to replacea ∧ ¬a with 0,
but unwise to replace0 with a ∧ ¬a. Our
framework allows such rules to be formally
reasoned about. Wherea and b are signals,
the relationa ≺ b asserts thatb is ‘cleaner’
thana, soF0..1 ≺ F0. Wheref and g are
functions of signals,f ≺ g asserts thatg is
‘cleaner’ thatf , for all possible inputs. Since
it is possible to prove the correctness of opti-
misations such as∀a . a∧¬a � F0, the tech-
nique presented in this paper may also be use-
ful in validating logic synthesis systems that
are friendlier to the needs of asynchronous
circuit designers. Similar optimisations may
also be useful in synchronous design for low
power applications – glitches cost power, so
their reduction or elimination is likely to re-

sult in commensurate improvements in power
consumption.

Conclusions

Existing EDA tools typically perform logic
synthesis without taking into account asyn-
chronous behaviour, even though this is the
default class of circuit described by the two
most commonly used hardware description
languages, Verilog and VHDL. Our frame-
work provides a sound framework for the con-
struction and validation of new software tools
that need not share this limitation.

References

[1] P. Cousot and R. Cousot,Abstract in-
terpretation: a unified lattice model
for static analysis of programs by con-
struction or approximation of fixpoints,
Conference Record of the Fourth An-
nual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Lan-
guages (Los Angeles, California), ACM
Press, New York, NY, 1977, pp. 238–252.

[2] , Systematic design of program
analysis frameworks, Conference Record
of the Sixth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of
Programming Languages (San Antonio,
Texas), ACM Press, New York, NY,
1979, pp. 269–282.

[3] A. Mycroft and N. D. Jones,A re-
lational framework for abstract inter-
pretation, Lecture Notes in Computer
Science: Proc. Copenhagen workshop
on programs as data objects, vol. 215,
Springer-Verlag, 1984.

[4] S. Thompson and A. Mycroft,Abstract
interpretation of asynchronous circuits,
Designing Correct Circuits (Barcelona),
ETAPS, 2004, in preparation.

2


